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gk = KLNlp”-’ [dk (ak + ck) + bk (I + paek)l 
4 = t’ (Sk) + ‘V (gk-d + v bk) + -+ (yk-1) + ‘V bk) + V (zk-1) + p-2 

ek = v bk) + v bk-l) (k = 1, 2, . . .) 

Estimating d, and ek by means of inequalities (4.4) we obtain 

&.+I < p,@ (/+ak + br + Ck), bk+l < gk’, Cktl < Pgk’ 

g,’ = P#-l [pa-’ (ah + cr) + b,l, P, = KL (28, + 4B, + 1) X 

max (N,, NI) 

Consider the sequence of numbers pk = p(a-3)'2ak + bk + uL-'ck (k = 1, 2, . . .I. For p>M= 

max [M,, (6Pl)a’(1-sn)l we have pk+l < pk/2 (k = 1, 2, . . .). Using this estimate we can prove that 

the sequences & (t), Y, (t), and Zk (t) converge uniformly on the set {(t,P): O,< t < Lp’,p 2 M) 
to some continuous functions E,(t,p), Y,(t, p) and z,(t, u) satisfying the inequalities 
obtained from (4.4) by the change &-+E,, yk-y,, zk-+z*. Passing to the limit in (4.2) as 
k+oo we find that 5* 0, cl)> Y, 0, IL), and z,(t,M) are the solutions of the system of 
integral Eqs.(4.1). The function E,(t, M) is continuously differentiable in t, the function 

Y, (t? p) is twice continuously differentiable in t, and Y,' (t. CL) = s* 0, CL). 
The uniqueness of the solution obtained can be proved in a standard way. 
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EQUIVALENT LINEARIZATION OF QUASILINEAR OSCILLATING SYSTEMS 

WITH SLOWLY VARYING PARAMETERS* 

L.D. AKIJLENKO 

The problem of the approximate reduction of quasilinear oscillating 
system with slowly varying parameters to a linear system that is 
equivalent in the asymptotic sense is investigated /l-3/. Two 
approaches are proposed based on intermediate "amplitude-phase" 
variables and osculating variables of the Van der Pol type. An 
equivalent linear system is also constructed with a prescribed degree of 
accuracy with respect to a small parameter. As an example a quasilinear 
oscillator /l-3/ is considered. 

The approach developed is based on well-known methods of equivalent 
linearlization J2-6J and is interesting from the point of view of 
applications, since linear equations can be investigated by standard 
methods. An adequate form of the equations is particularly important in 
the analysis and synthesis automatic controls systems having the 
required quality of transients /S-8/. 
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I. Statement of the problem of the equivalent linearization of perturbed systems of the 
gyroscopic type. We consider a quasilinear oscillating system often encountered in mechanics, 
described by the Cauchy problem of the form /7/ 

.z: = Y (T) Y + Ef (t, z, y), 2 (0) = 2 (1.1) 

Y’ = --1’ (a) 2 + % (T, I, Y), Y (0) ; Y0 

0 < 1’1 < Y (T) < v2 < CD, 7 = et + 70; E E LO, EJ, Eg < 1 

t E IO, T (c)l, T (e) = 6X1, 0 = const; z - ~~ E [O, 81 

Here x, y are the phase variables belonging to the domain of definition and smoothness 
of the functions f, g and dots denote derivatives with respect to time t. The function v (z) 
has the meaning and dimensions of frequency; in the general case it, and also the functions 
f, g, may depend on the slowly varying time z;e is a small numerical parameter character- 
izing the small size of the perturbing actions Ef, e&T and the rate of the change of the 
payzeters (T' = E). The constant quantities x0, Y", %I are the initial values ,of the vari- 

z, Y. r and are assumed to be given and to belong to the domain of definition of system 
(1.1); 8 is an arbitrarily large but fixed number. In this way the motion is investigated 
in an asymptotically long (as c-+0) but bounded time interval (see below). 

Equations of the form (1.1) are often encountered in problems of the dynamics and control 
of the rotation of a solid /2, 3, 71. For example, x, y can be projections of the vector of 
the kinetic momentum or angular velocity on the equatorial plane and v can be the angular 
velocity of precession; the dependence of v on z is usually called a smooth change of the 
axial component of these vectors. The perturbing moments &f and ag may be due to 
small external and internal actions of different physical kinds. 

The problem is posed of the equivalent linearization of quasilinear oscillating system 
(1.11, i.e., a change of variables z = x (zr, y,, 7, e), Y = y (x1, y,, 7, e) such that the Cauchy 
problem for zr, y, has the form 

For E = 0 the homogeneous system (1.2) should degenerate into a system of a simpler 
form E' = Y,,Q 9' = -Y&, where y0 = v (T,,) = const and s (0) = z", rl (0) = Y"; the initial system 
(1.1) degenerates into such a system. In addition we require that the variables s,,Y, and 
2, Y# are close in the asymptotic sense: I x1 - 5 I + I Y, - Y I = 0 (e) for t E IO, T (s)l. The 
coefficients px* v (7, e), qXsu (z, e) and s,"(e), Y,"(E) are unknown and are to be determined. 

To solve the problem on a physical level of rigour the methods of optimum (in the sense 
of the minimum mean square deviation) energy and harmonic linearization were used, see for 
example /l-6, 8/ (for the principles of "energy" and "harmonic" balances see /2/j. An 
effective mathematical tool for constructing the equivalent linear system (1.2) of definite 
structure (see below) is the Krylov-Bogolyubov-Mitropol'ski averaging method /I-3/ which we 
use in this paper. Using asymptotic methods of non-linear mechanics one can obtain a strict 
mathematical foundation, i.e., one can formulate the requirements for system (1.1) and give 
an estimate of the error. This approach involves changes of variables, a reduction of the 
system to a standard form and averaging of the equations /l-3, 7, 91. After solving them 
the reverse passage is performed which allows us to obtain the equations of motion in the 
initial form (1.2). 

Before we proceed to construct the linear system (1.2) equivalent to the initial non- 
linear system (1.1) we make the following remark. A standard oscillating system of the 
"quasilinear'oscillator" type with slowly varying parameters, which is frequently encountered 
in applications, 

2" + v2 (T) 2 = eh (T, x, z'), 5 (0) = i, 2' (0) = Z'O (1.3) 

can be reduced to the particular form of system (1.1) by making the change I. = vy (the 
function v (7) should be differentiable) 

5' = vy, 2 (0) = zO, Y (0) = y" = t'OvO-r 

y' = -vz - ev'v-'y + ev-'A (.c, f, v (7) Y) 

(f (7, x, y) - 0, g (z, z, Y) f -v'v-'y + V'h, v = Y (7)) 

(1.4) 

And conversely, under smoothness conditions on system (l.l), by standard methods of the 
theory of ordinary differential equations, system (1.1) can be reduced to the form (1.3). In 
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particular, if we differentiate the first equation of (1.1) with respect to t, solve the 
initial system with respect to the unknown Y, Y' (for example using the Picard method of 
successive approximations or the method of tangents) and substitute the expression obtained 
into the differentiated equation, we obtain an equation of the form (1.3) with respect to 2 
with the function h equal to 

h = h (z, I, 5', E) EE v' (t) y* + Y (7)g (2, z, y*) + E f%* + 
f,* I’ + f,* Y’ 

Y = Y* (7, 5, 2.7 EL y’ = y’* (T, X, 5’, E) = 

--y (T) X + Q? (‘c, z, y* (T, z, z’, 8) 

x (0) = 2, z’ (0) = 5.O = Y (To) y” + Ef (70, 2, y”) 

The variable Y = Y* can be defined from the first equation of (1.1) independently of 
Y', and y' can be found explicitly from the second. 

In what follows we will consider an oscillating system of the form (1.1). 

2. Reduction to tinear form in the first approzimation with respect to a maliZ parameter. 
We will perform this procedure in two ways: 1) using the "amplitude-phase" variables 

r, $7 and 2) using the oscillating variables a, b of the Van der Pol type. 
1) We make the necessary change of the initial variables 5, y to new ones r,$ by means 

of the relations 
(I, y) --f (r,$): I = r cos *, Y = --r sin 0 (r # 0) (2.1) 

As usual /2, 9/, differentiating expressions (2.1), by virtue of system (1.11 we obtain 
equations (the Cauchy problem) for the slow variable, the amplitude r, and the fast variable, 
the phase $, of "standard form with rotating phase" 

r’ = eR (7, r, $), r (0) = r” = (.P + yo2)“s > 0 

‘b,’ = v b) + Ey b, r, ‘b,), ‘+ (0) = ‘#” 
(cos$O = x0/r', sin+" = -y"/rO) 

R (z, r, 9,) = f (z, 2, Y) cos 9 - g (7, 2, y) sin 9 

Y (z, r, +) = --G [f (z, x, y) sin 9 + g br x, y) co9 $1 

(2.2) 

We understand here that the variables X, Y in the functions f, g are replaced in 
accordance with (2.1). Next, system (2.2) is placed in correspondence with the averaged 
system of the first approximation (averaged over $1 /l-3, 9, lo/: 

p' = eR, (z, p), p (0) = r” (R, (z, r) = <R k r, Wrp). 

cp’ = v (z) + EY, (T, p), ‘p (0) = q” (Y, (7, r) = <Y (2, r, ll)>cl 

(2.3) 

The angle brackets denote averaging over the phase 9. 
In the system (2.3) obtained the slow variable p is separated from the averaged phase 

cp. After integrating the first equation for the amplitude p, in analytically or numerically, 
which can be done with respect to the slow time z (P' = dpldz = R, (T, P), P (G) = 0, the phase 
'p can be found by quadrature. Thus, assuming that we know the solution for p, we have 

When the Lipschitz condition or the condition of differentiability of the functions R, 
Y with respect to r,$, are satisfied i.e., of the functions f, g, in X, y, respectively, 
between the solution 

r = r* 0, To, rD,+o, E), $ = ** 0, To, r", $", 8) (2.5) 

of systems (2.2) and the solution (2.4) of system (2.3), we have e-proximity in the asymp- 
totically long time interval considered (see (1.1)) 

1 r* - p* [ f. I$* - qf* 1 G ~2.2, t E [O, @E-l], c = const (2.6) 

From (2.61 and (2.1) it follows that the property of e-proximity also occurs for 
unknown initial variables x, y and known approximate variables Zll Yl 
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/ x* - x1* / _t 1 y* - yl* / Q Ce, t E lo, ee-‘I, c = mnst 

5 = x* Es r* cos+$*, yzy*= - -r* sin** 

Xr = x1" = p* cos 'F*, y, = y,* = -p* sin 'p* 

We note some analytic properties of system (2.3) with respect to the variable p fox 
sufficiently small p > 0. Since, by hypothesis, the functions f, g satisfy the Lipschitz 
condition or are differentiable with respect to 2, y in the neighbourhood of (0,0):x2 -j- y"<dz, 
their Fourier coefficients in the variable $ (after substituting for X, y the expressions 
(2.1)) satisfy the estimates 

/ k, (T, 4 I < D, / ki’S b, 4 I < Dr; k = f, g 
D = cons& T - z. E- 10, @I, 0 < r < d, 16 = 1, 2, . . . 

(2.7) 

For the averaged functions R,, lu, we have analogous estimates 

I R, (7, PI I < DP, R, (r, P) = '/, Ifi" (7, P) - g,9 (~7 P)l 

IY, bi PI I <D, Y, b, P) = ---l/K" [ft" (~2 P) + g,c (7, P)] 
(2.8) 

which allow us to assert that system (2.3) satisfies existence and uniqueness conditions of 
solution (2.4). 

We will now introduce new variables u, V connected with the variables P, cp by the 
relations analogous to (2.1) 

7.5 = pcos (p, v = -P sin 'p (P 9 0) (2.9) 

Differentiating expressions (2.9) with respect to t using Eqs.f2.3) and eliminating the 
functions coscp;sincp according to (2.91 we obtain non-linear equations for U, v of the 
definite structure 

U’ = EpU + (Y + Eq) V, U (0) = 9; U’ = -(V + Eq) U + 

epv, v (0) = y” 
p SE (u” + I?)‘$ P = P (z, P) = P% (2, P), 9 = P (r, P)= 

y, (r, P) 

(2.10) 

(here and henceforth v = Y(T)). 
We substitute the known expression for P = p* (r,zO,ro) (2.4) into the expressions for 

the coefficients p, q in (2.10). We obtain the desired linear homogeneous system with slowly 
varying parameters also of definite structure, characterized by two coefficients ep* and 
Y + eq*: 

ul’ = Ep*z+ + (v + Eq*) Ul, UI (0) = z” 

Ur' = -(Y + Eq*) U1 + &JJ*U,, U, (0) = y” 

p* = p* (x, q,, P) s R, (i, p*)/p*, q* = q* (z, zo, I”) s 

To b, P*), P* = P* (? 150, rO) 

(2.11) 

It can be established that the solution u = u* zap* coscp*, v = v* z -p* sin 'p* of 
Cauchy problem (2.10) is identical with the solution ur = ml*, v1 = vr* of problem (2.11). 

Indeed, we pass in system (2.11) to the "amplitude-phase" variables p,. e1 by formulae 
(2.9) and we obtain the equations pi'= ep*p,, Q’= vi_ eq* and the conditions h(O) = r', 'pl (O)== +". 
Since p*' = eR, (T, p*), taking into account the expression for p* in (2.11) we obtain the 
relation dp,lp, = dp*lp* from which it follows that 

and also R= @1*-r@ (see (2.4)). 
Note that the (2x2) matrix of the linear system is a linear combination of the unit 

matrix I and a simplectic matrix J, i.e., the sum EPIC + (v + ep*)J. The coefficient ep* 
defines a small dissipation (a slow change of the averaged amplitude p of the oscillations), 
and the coefficient (vi-&q*) defines the frequency (the rate of change of the averaged phase 
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cp). Characteristic exponents corresponding to the "frozen coefficients" (fixed r) are: 

A,,, (z, a) = ep* (T,ZO, r’) + i Iv + eq* (z, To, r’)l (2.13) 

Next, the linear Cauchy problem (2.11) also describes the initial problem (1.1) with 
error 0 (E) in the asymptotically long time interval considered t E IO, ee-‘I in the case 
when the initial conditions are given with error O(E): ~~(0) = I' + O(e), V(O) = y" +O (E) /9/. 

We note that the approach presented above is not always convenient from the computational 
point of view since the expression for Y and Y, have singularities if the variables r and 
p change conssiderably and can take small values (r,p -e). To construct the equivalent linear 
system in that case, a preliminary change to osculating variables a, b of the Van der Pol 
type is preferable /2, 4, 7, 9/. 

2) We will now change from the variables (5, y) to the variables (a, b) by a non- 
singular change, i.e. a linear transformation of "rotation", 

(z, y) t (a, b): z = a cos 8 $ b sin 0, y = -asin 8 + b cos f3 (2.14) 

The variable 8 is defined in (2.4). We note that, as a result of relations (2.1), (2.14) 
between the variables r,Q and a, b, we have the connection 

a = r coa (I$ - 8), b = -r sin (II, - 8); rz = aa + b2 (2.15) 

cosg = cos (e - IS), sin* = sin (e - 6) 

cos 6 = ar-r, sin 6 = br-1 ($ = i3 - 6, mod 2n) 

A routine procedure leads to the Cauchy problem for the osculating variables a, b: 

a’ = EA (T, a, b, f3), A G f cos 8 - g sin 8, a (0) = a0 = I' (2.16) 

b’ = EB (T, a, b, e), B s f sin 8 + g co9 8, b (0) = b” = y” 

Here expressions (2.141 for x, y are represented in the functions f, g; 8 is a known 
function of t, ‘co, E (Or Z, ‘cot E) playing the role of rotating phase. The standard system 
(2.16) (by a change of argument it can be reduced to a standard system in the sense of 
Bogolyubov /l-3, 9/, see below) corresponds to the system of the first approximation averaged 
over e 

Y’ = co, Y h) = co; c, = c, (z, a, fl) sz 

cc by at B, e)h I ccl I <D ( I a I + I B I ) 
(y=a,p;c=a,b;C=A,B; I5 dldz) 

Ao = ‘h kc (.c, a, B) - g,’ (7, a, B)I, 
Bo = ‘/a Vi” (~3 a, 13) + g,’ (z, a, ~1 

(2.17) 

Here fi", gf" are the first Fourier coefficients of the functions f and g, Zn-periodic 
in 8 (after replacing x and y according to (2.14)), see (2.8) and (2.9); for example, 
2(f cos Qe; we define fi and gi'" analogously. 

flc = 

turn out to be connected. 
Unlike system (2.3), Eqs.(2.17) for a, fj 

However, in accordance with relations (2.15) they can be reduced 
to the form of one equation for p, which has to be integrated, and the quadrature for the 
other variable, for example, 6 (see (2.4)). 

Next, the solution of the averaged Cauchy problem (2.17) can be obtained in slow time 
t, z - r0 E [O, 01 , in a relatively short range of change of the argument by analytic or 
numerical methods. We shall assume that it is known 

a = a* (r, zO, a", b”), B = B* (T, G, aoq b”) (2.18) 

From the variables a, fi described by system (2.17) we change to the variables u, v by 
formulae analogous to (2.14) and after differentiating u, V, by virtue of system (2.17) we 
eliminate the expression cos8 and sin 8. We obtain a non-linear system analogous to (2.10), 

u' = EPU + (v + EQ) ", u (0) = a" = 9 

V' = -(Y + EQ) ", + q,V, u (0) = b” = y” 

p = p(Ga,B) = ““a:;? I q = q(z,a,B) = "j-y$ 

(U = a cos 8 + f3 sin 8, v = --a sine + p cos e) 

(2.19) 

Here the variables a, 8 should be expressed in terms of u, v and 8 in accordance with 
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(2.19) by reverse rotation: a = ucos8 - usin 8, (3 = ~sin 8 j- PCVS~. We note that, on the 
basis of estimates (2.17) for A,,B, the coefficients p, 4, in (2.19) are bounded as a2 + 
B"--+ 0 (U' + I?% - 0). 

We now replace the slow variables a, fi in (2.19) by the known expressions a*, p*(2.18). 
We obtain an equivalent linear homogeneous system of the form (2.11) where the coefficients 

P * = P (T, a*, B*), (1* = q (T, a*, B*) (2.20) 

are known functions of the slow time t and the parameters of the problem. The structures 
of the linear systems of Eqs.(2.11) with coefficients (2.11) and (2.20) respectively, are 
identical, i.e., their matrices are linear combinations of unit and simplectic matrices with 
coefficients cp* and v f&q*. This property leads to the same "frozen" characteristic 
exponents (2.13). 

Hence, we have again obtained a linear system of the form (2.11), equivalent to the 
initial one (l.l), with slowly varying coefficients (2.20). As we remarked above, we under- 
stand equivalence in the sense of e-proximity of the solutions of these systems in an asymp- 
totically long time interval TV [O, O&-l] under the condition of e-proximity of the initial 
conditions. If the condition of uniform asymptotic stability of the solutions (the limit 
points or cycles) of averaged system (2.3) or (2.17) with respect to the initial conditions 
is satisfied (see /2, 9/I then the proximity indicated, i.e., the equivalence of initial and 
linearized systems, occurs in an unbounded time interval TV [O, m) which is of considerable 
interest for analysing or synthesizing automatic control systems /5-8/. 

3. Construction of the equivalent linear system with a given degree of accuracy with 
respect to a mat2 parameter. We shall construct the linear system on the basis of osculating 
variables a, b (2.14) according to (2.16)-(2.18). The solution of system (2.16) has to be 
constructed with a given degree of accuracy .sN(N = 0, 1. 2, . ..) in an asymptotically long 
time interval t E lo, &-'I, 6 = const. To this end we can use the procedures worked out, for 
example, in /2, 3, 7, 9-12/. We note that by introducing the argument 8 by the formula 
d0 = vdt, see (2.4), and the corresponding slow argument ti = ~8 (de = vd7, v > v1 > 0), system 
(2.16) can be reduced to the form z' = EZ @,z, e), where the prime denotes the derivative 
with respect to 8, and z, Z are two-dimensional vectors, where Z is 2n-periodic in 8. Extend- 
ing the vector z, z = (zlr z2, zQ) (z3 _= r, 2, = 1) we obtain the system 
standard in the sense of Bogolyubov. 

Z' = EZ (z, 8) which is 

The indicated solution of the (N + I)-th approximation is constructed on the basis of 
the general solution a*, @* of (2.181, see /2, 7, 9, 12/; it has the form 

c = c (t, Tco, 2, b”, E) = CN + 0 (EN+l) 

CN = cN (e, t, %, a’, b”, E) = YN (T, T,,, 2, b”, E) + 

ESN’ (0, T, T,,, a”, b”, E); c = a, b; v=a, B 

(3.') 

Here y are functions of the slow time 2, regular with respect to e, and describe smooth 
(averaged) motions with error 0(&N+'); for N =0 (E =0) they are equal to y* (2.18). 
The components e&$(c = a, b) are Zn-periodic in 8, they take into account small fast oscil- 
lations also with an accuracy O(EN~) and for N = 0 (E = 0) should be omitted. The func- 
tions Y,@ are again unknown. 

We change from the variables a~, bN to the variables u, V by formulae of the type (2.19). 
Differentiating them with respect to t we obtain the analogous quasilinear system 

U' = VU + E (CL,,!' + aN")~os 8 + e @N' + 6$')sin 8 

v' = -vu - e (aN' + &$‘) sin 8 + e (flN' + 6Nb')cos 8 

COS @ = (UNU + bNU) (uN2 + b&l, Sin o = (bNU - a& (ax’ + bN*)+ 

(3.2) 

We now use the equations for the slow variables for aN, $N which have the form /l-3, 
7, g-11/ 

+?N’ = co (TV aN9 BN) + SC(N) (r, aN,pN, 8); J’ = a, fi; c = A, B (3.3) 

and we reduce the system of Eqs.(3.2) to a form little different from (2.11) and (2.20) 

UN’ = ep*uN + (Y + Sq*) VN + SUN, UN (0) = l&,7’ (3.4) 
UN' = -(v + eq*)uN + &p*vN + ET/rN, ,,N (0) = UN' 

s* = s* (z, zO, a", b”), s = p, q; w, = w, (T, 8, To, 2, b’, E), w = u, v 

Here SUN and SVN are small external actions 2n-periodic in 
A(N), B(N), and 6Na’r 6Nb’. 

8 defined by aNI BN, 

This excitation, to a first approximation in E, is not perturbed 
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by slow variables a, /3. Hence, the linear system (3.4) constructed, which is equivalent to 
(l.l), contains external periodic excitation and approximates the solution x* (t,%,,z',y",~), 
y* (t, rO, I', y', E) with error 0 (eN+l) in an asymptotically long time interval t E [U, @E--l] 

if uNO = 2" + 0 (eN+l), UN' = y" + 0 (EN+~). 

4. Ex4nspl.e. Consider the oscillations of a quasilinear oscillator with slowly varying 
parameters (1.3). Using the approach presented in Sect.2 we obtain two forms of equivalent 
equations of the first approximation with corresponding expressions for the coefficients p, 
q and p*, q*. According to (1.4), (2.1)-(2.31, (2.8)-(2.11) we have for the first form of 
representation of the coefficients (see paragraph 1 of Sect.2) 

P=P(z,P)E-~-yvp P = P* w. % rO) = P (t, p* (T, 70, rO)) (4.1) 

hc 
4 = q (T, P) = - _ct 1 * = q* (T, r,, TO) s q (t, p* (T, 4, rO)) 

an 

h e,s=hc,,(T7p)=& 1 h(r,pcosp,--(T)psin~) 
0 

In the second form of equations, according to (1.4), (2.14)-(2.20) (see p.2 of Sect.2) 
we have the analogous expressions 

v’ 1 
P = P (T, a, b) = - 2y - 2ypp (ahl” + fihl’) 

q = q(r,a, ~,F--&@L& ahI’) 

P = P’ (T, 701 z3, Y”) = p CT, a*, B’), 4 = 9’ (7, r,, x0, y”) E q (T, a’, B’) 

WI 

(4.2) 

We now reduce the equivalent systems of the first approximation (2.101, (2.11) or (2.191, 
(2.20) to the form of one linear "homogeneous second-order equation (the terms o(@) are 
omitted). To fix our ideas, we take the first form (2.10), (2.11), (4.1). We differentiate 
the first equation of (2.10) with respect to t, express ","' in terms of II,U', z and sub- 
stitute them into the differentiated expression. 
with error 0 (~2): 

We obtain the required equivalent equations 

u" + v*u = - 1% I (vp)l [h, (7, PI a’ - ho CT, p) ul (4.3) 

~1” + +‘u~ = - [PE / @p)l [5 (7, p* (T, r,, 9)) U’I- h, (T, p' (r, 70, TO)) ~1, pz = u* + 
u'"/v' 

The coefficients of u',B,' 
the "returning force". 

define the effective "dissipation", and those of B,ZQ define 
Analogously, we can obtain equations of the form (4.3) on the basis 

of the second form of equivalent equations, see (2.191, (2.201, (4.2). 
The essential difference between the equations obtained and those known in the theory 

of linear oscillating sytems is the fact that small non-linear peturbing terms eh can lead 
to dissipation and to an increase in the effective frequency (-see the expresions for 

and 9, q* (4.1), (4.21 for the oscillator and also general formulae (2.101, (2.11)-(2.?$, 
(2.191, (2.20)). This property is not present in linear systems. Conversely, an increase 
in the amplitude of the oscillations (negative dissipation) can lead to a decrease in fre- 
quency. We note that the equation for the variable u,despite the term v(~)u, contains 
additional small components 0 (e) which must be taken into account in the first approximation. 
As was shown above, the equivalent equations of the first approximation obtained, unlike the 
initial one, have a definite structure (defined by two coefficients) and are also "homogeneous", 
i.e., they have a rest point at the origin. 

We note that in the case of perturbations f, g, or h that are polynomials in x, y or 
z, z' the construction of equivalent equations leads to elementary quadratures of integer 
powers of trigonometric functions of the form cos"osinm,p or cosnOsinmO in the interval 
lO,2x] and also to the integration of averaged equations of the first approximation (2.31, 
(2.17) which may involve some computational costs. If the averaged equations do not depend 
on z (for p or a,B) then the integration is performed in quadratures; we can also use 
here methods of integrating equations of the first order. 
Uuffing, 

Classical equations of the type of 
Van der Pol and many others /l-4, 9, ll/ can be investigated to the end. The 

approach also turns out to be fairly effective in more-complicated cases of non-linearity: 
of the dry friction type, air gap, hysteresis loops, quadratic friction etc. /2-b, ll/. Of 
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COUFCSB, the case of non-smooth perturbations requires appropriate justification. 
The results obtained can be directly carried out to systems of the form (1.1) or (1.3) 

containing, in addition, a slow vector Z: i = / (T, z, y, z), g =: g (7, Z, I,, Z) or h = /L (T, Z, .c’. 31, where 
i' = EZ (T, 5, y. z) or 6' = EZ (T, 5, I', 2). Here, however, Y= v(z), i.e., the dependence of v on z 
cannot be permitted since it can lead to so called essentially non-linear systems, which 
require additional study. 

The development and justification of approaches to constructing equivalent linear systems 
for integrodifferential equations, for essentially non-linear systems, and also for multi- 
particle (multiphase) systems, are of considerable theoretical and practical interest. 
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